
Package: MultiObjMatch (via r-universe)
September 3, 2024

Type Package

Title Multi-Objective Matching Algorithm

Version 1.0.0

Description Matching algorithm based on network-flow structure. Users
are able to modify the emphasis on three different optimization
goals: two different distance measures and the number of
treated units left unmatched. The method is proposed by
Pimentel and Kelz (2019) <doi:10.1080/01621459.2020.1720693>.
The 'rrelaxiv' package, which provides an alternative solver
for the underlying network flow problems, carries an academic
license and is not available on CRAN, but may be downloaded
from Github at <https://github.com/josherrickson/rrelaxiv/>.

License MIT + file LICENSE

Encoding UTF-8

Imports cobalt, dplyr, optmatch, matchMulti, fields, plyr, RCurl,
gtools, rcbalance, MASS, stats, methods, ggplot2, utils, rlang,
rlemon

RoxygenNote 7.1.2

Suggests testthat (>= 3.0.0), rrelaxiv

Config/testthat/edition 3

NeedsCompilation no

Author Shichao Han [cre, aut], Samuel D. Pimentel [aut]

Maintainer Shichao Han <schan21@berkeley.edu>

Date/Publication 2024-07-04 23:10:05 UTC

Repository https://shichaohan.r-universe.dev

RemoteUrl https://github.com/cran/MultiObjMatch

RemoteRef HEAD

RemoteSha 18e4360a8e5b18446eb2a20da40cc81da73c5ad4

1

https://doi.org/10.1080/01621459.2020.1720693
https://github.com/josherrickson/rrelaxiv/

2 Contents

Contents
addBalance . 3
addExclusion . 3
balanceCosts . 4
build.dist.struct . 4
build.dist.struct_user . 5
callrelax . 6
check_representative . 6
combine_dist . 7
combine_match_result . 7
compare_matching . 8
compare_tables . 9
convert_index . 10
convert_names . 10
costSkeleton . 11
data_precheck . 11
descr.stats_general . 12
distanceFunctionHelper . 12
dist_bal_match . 13
dummy . 16
edgelist2ISM . 17
excludeCosts . 17
extractEdges . 18
extractSupply . 18
filter_match_result . 19
flattenSkeleton . 19
generateRhoObj . 20
generate_rhos . 20
getExactOn . 21
getPropensityScore . 21
get_balance_table . 22
get_five_index . 23
get_pairdist_balance_graph . 24
get_pairdist_graph . 25
get_rho_obj . 26
get_tv_graph . 26
get_unmatched . 27
makeInfinitySparseMatrix . 28
makeSparse . 29
matched_data . 29
matched_index . 30
matrix2cost . 30
matrix2edgelist . 31
meldMask . 31
netFlowMatch . 32
obj.to.match . 32
pairCosts . 33

addBalance 3

rho_proposition . 33
solveP . 34
solveP1 . 34
summary.multiObjMatch . 35
two_dist_match . 36
visualize . 40

Index 42

addBalance Add fine balance edges

Description

Add fine balance edges

Usage

addBalance(net, treatedVals, controlVals, replaceExisting = TRUE)

Arguments

net the network object created for the network flow problem

treatedVals the balance value for treated nodes

controlVals the balance value for control nodes
replaceExisting

(optional) whether or not to replace the existing net; TRUE by default

Value

the network structure with balance edges added

addExclusion Add exclusion edges

Description

Add exclusion edges

Usage

addExclusion(net, remove = FALSE)

Arguments

net the input network structure

remove (optional) whether to exclude edges; FALSE by default

4 build.dist.struct

Value

the network structure with exclusion edges added to allow for trdeoff for the exclusion cost

balanceCosts Create a skeleton representation of the balance edge costs

Description

Create a skeleton representation of the balance edge costs associated with pairings for a given
distance and network

Usage

balanceCosts(net, balance.penalty = 1)

Arguments

net the network structure
balance.penalty

(optional) the numeric value for balance; 1 by default

Value

the skeleton with balance edge cost

build.dist.struct An internal helper function that generates the data abstraction for the
edge weights of the main network structure.

Description

An internal helper function that generates the data abstraction for the edge weights of the main
network structure.

Usage

build.dist.struct(
z,
X,
distMat,
exact = NULL,
dist.type = "Mahalanobis",
calip.option = "propensity",
calip.cov = NULL,
caliper = 0.2,
verbose = FALSE

)

build.dist.struct_user 5

Arguments

z a vector of treatment and control indicators, 1 for treatment and 0 for control.

X a data frame or a numeric or logical matrix containing covariate information for
treated and control units. Its row count must be equal to the length of z.

distMat a matrix of pair-wise distance specified by the user

exact an optional vector of the same length as z. If this argument is specified, treated
units will only be allowed to match to control units that have equal values in
the corresponding indices of the exact vector. For example, to match patients
within hospitals only, one could set exact equal to a vector of hospital IDs for
each patient.

dist.type one of (’propensity’,’user’,’none’). If ’propensity’ is specified (the default op-
tion), the function estimates a propensity score via logistic regression of z on X
and imposes a propensity score caliper. If ’user’ is specified, the user must pro-
vide a vector of values on which a caliper will be enforced using the calip.cov
argument. If ’none’ is specified no caliper is used.

calip.option a character indicating the type of caliper used

calip.cov see calip.option.

caliper a numeric value that gives the size of the caliper when the user specifies the
calip.option argument as ’propensity’ or ’calip.cov’.

verbose a boolean value whether to print(cat) debug information. Default: FALSE

Value

a distance structure used for constructing the main network flow problem

build.dist.struct_user

An internal helper function that generates the data abstraction for the
edge weights of the main network structure using the distance matrix
passed by the user.

Description

An internal helper function that generates the data abstraction for the edge weights of the main
network structure using the distance matrix passed by the user.

Usage

build.dist.struct_user(z, distMat, verbose = FALSE)

Arguments

z a vector indicating whether each unit is in treatment or control group

distMat a matrix of pair-wise distance

verbose a boolean value whether to print(cat) debug information. Default: FALSE

6 check_representative

Value

a distance structure used for constructing the main network flow problem

callrelax Call relax on the network

Description

this function is copied from the rcbalance package

Usage

callrelax(net, solver = "rlemon")

Arguments

net the network structure

solver (optional) the solver; by default, "rlemon"

Value

list of the result from the call to relax solver

check_representative Check the representativeness of matched treated units

Description

Summary function to compare SMD of the key covariates in matched and the full set of treated
units.

Usage

check_representative(matching_result, match_num = NULL)

Arguments

matching_result

the matching result returned by either dist_bal_match or two_dist_match.

match_num (optional) Integer index of match that the user want to extract paired observa-
tions from. NULL by default, which will generate a table for all the matches.

Value

a summary table of SMDs of the key covariates between the whole treated units and the matched
treated units.

combine_dist 7

combine_dist An internal helper function that combines two distance object

Description

An internal helper function that combines two distance object

Usage

combine_dist(a, b)

Arguments

a a distance structure object

b a distance structure object

Value

a new distance structure object whose edge weights are the sum of the corresponding edge weigths
in a and b

combine_match_result Combine two matching result

Description

Combine two matching result

Usage

combine_match_result(matching_result1, matching_result2)

Arguments

matching_result1

the first matching result object.
matching_result2

the second matching result object.

Value

a new matching result combining two objects. Note that the matching index for the second matching
is the original name plus the maximum match index in the first matching object.

8 compare_matching

compare_matching Generate covariate balance in different matches

Description

This is a wrapper function for use in evaluating covariate balance across different matches. It only
works for ’Basic’ version of matching (using dist_bal_match).

Usage

compare_matching(
matching_result,
cov_list = NULL,
display_all = TRUE,
stat = "mean.diff"

)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

cov_list (optional) factor of names of covariates that we want to evaluate covariate bal-
ance on; default is NULL. When set to NULL, the program will compare the
covariates that have been used to construct a propensity model.

display_all (optional) boolean value of whether to display all the matches; default is TRUE,
where matches at each quantile is displayed

stat (optional) character of the name of the statistic used for measuring covariate
balance; default is "mean.diff". This argument is the same as used in "cobalt"
package, see: bal.tab

Value

a dataframe that shows covariate balance in different matches

Examples

Generate matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,

compare_tables 9

dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)

Generate table for comparing matches
compare_matching(match_result, display_all = TRUE)

compare_tables Summarize covariate balance table

Description

This function would take the result of get_balance_table function and combine the results in a
single table. It only works for ’Basic’ version of the matching.

Usage

compare_tables(balance_table)

Arguments

balance_table a named list, which is the result from the function get_balance_table

Value

a dataframe with combined information

Examples

Generate matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)

Generate summary table for comparing matches
compare_tables(get_balance_table(match_result))

10 convert_names

convert_index An internal helper function that translates the matching index in the
sorted data frame to the original dataframe’s row index

Description

An internal helper function that translates the matching index in the sorted data frame to the original
dataframe’s row index

Usage

convert_index(matching_result)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

convert_names Internal helper function that converts axis name to internal variable
name

Description

Internal helper function that converts axis name to internal variable name

Usage

convert_names(x, y, z = NULL)

Arguments

x the user input character for x-axis value

y the user input character for y-axis value

z the user input character for z-axis value

Value

a named list with variable names for visualization for internal use

costSkeleton 11

costSkeleton Create cost skeleton

Description

Create a more user-friendly data structure to represent the edge costs in a network. Internally the
network object used by the optmiization routine represents all the edge costs in a single vector.
The "skeleton" structure decomposes this vector into a list of components, each corresponding to a
different role in the network: "pairings" are edges between treated and control, exclusion" are direct
links between treated units and a sink that allows them to be excluded, "balance" refers to edges
that count marginal balance between groups, and "sink" indicates edges that connect control nodes
to the sink. Skeletons are created so these various features can be combined (or switched on and
off) easily into objective functions, and the interface to the main tradeoff function expects to see
each function represented in skeleton format.

Usage

costSkeleton(net)

Arguments

net the network structure

Value

the skeleton

data_precheck Data precheck: Handle missing data(mean imputation) and remove
redundant columns; it also adds an NA column for indicating whether
it’s missing

Description

Data precheck: Handle missing data(mean imputation) and remove redundant columns; it also adds
an NA column for indicating whether it’s missing

Usage

data_precheck(X)

Arguments

X a dataframe that the user initially inputs for matching - dataframe with covariates

Value

a dataframe with modified data if necessary

12 distanceFunctionHelper

descr.stats_general Generate summary statistics for matches

Description

Generate summary statistics for matches

Usage

descr.stats_general(matches, df, treatCol, b.vars, pair.vars, extra = FALSE)

Arguments

matches One matching result from the main matching function

df the original data frame used for matching

treatCol the character of the column name for treatment vector

b.vars the vector of column names of covariates used for measuring balance

pair.vars the vector of column names used for measuring pairwise distance

extra the list of summary statistic; it must be the types that can be taken by cobalt

Value

a named vector of summary statistic

distanceFunctionHelper

Helper function that change input distance matrix

Description

Helper function that change input distance matrix

Usage

distanceFunctionHelper(z, distMat)

Arguments

z the treatment vector

distMat the user input distance matrix

Value

a distance matrix where (i,j) element is the distance between unit i and j in the same order as z

dist_bal_match 13

dist_bal_match Optimal tradeoffs among distance, exclusion and marginal imbalance

Description

Explores tradeoffs among three important objective functions in an optimal matching problem:the
sum of covariate distances within matched pairs, the number of treated units included in the match,
and the marginal imbalance on pre-specified covariates (in total variation distance).

Usage

dist_bal_match(
data,
treat_col,
marg_bal_col,
exclusion_penalty = c(),
balance_penalty = c(),
dist_matrix = NULL,
dist_col = NULL,
exact_col = NULL,
propensity_col = NULL,
pscore_name = NULL,
ignore_col = NULL,
max_unmatched = 0.25,
caliper_option = NULL,
tol = 0.01,
max_iter = 1,
rho_max_factor = 10,
max_pareto_search_iter = 5

)

Arguments

data data frame that contain columns indicating treatment, outcome and covariates.

treat_col character of name of the column indicating treatment assignment.

marg_bal_col character of column name of the variable on which to evaluate marginal balance.
exclusion_penalty

(optional) numeric vector of values of exclusion penalty. Default is c(), which
would trigger the auto grid search.

balance_penalty

(optional) factor of values of marginal balance penalty. Default value is c(),
which would trigger the auto grid search.

dist_matrix (optional) a matrix that specifies the pair-wise distances between any two ob-
jects.

dist_col (optional) character vector of variable names used for calculating within-pair
distance.

14 dist_bal_match

exact_col (optional) character vector, variable names that we want exact matching on;
NULL by default.

propensity_col (optional) character vector, variable names on which to fit a propensity score (to
supply a caliper).

pscore_name (optional) character, giving the variable name for the fitted propensity score.

ignore_col (optional) character vector of variable names that should be ignored when con-
structing the internal matching. NULL by default.

max_unmatched (optional) numeric, the maximum proportion of unmatched units that can be
accepted; default is 0.25.

caliper_option (optional) numeric, the propensity score caliper value in standard deviations of
the estimated propensity scores; default is NULL, which is no caliper.

tol (optional) numeric, tolerance of close match distance; default is 1e-2.

max_iter (optional) integer, maximum number of iterations to use in searching for penalty
combintions that improve the matching; default is 1, where the algorithm searches
for one round.

rho_max_factor (optional) numeric, the scaling factor used in proposal for penalties; default is
10.

max_pareto_search_iter

(optional) numeric, the number of tries to search for the tol that yield pareto
optimal solutions; default is 5.

Details

Matched designs generated by this function are Pareto optimal for the three objective functions.
The degree of relative emphasis among the three objectives in any specific solution is controlled by
the penalties, denoted by Greek letter rho. Larger values of exclusion_penalty corresponds to in-
creased emphasis on retaining treated units (all else being equal), while larger values of balance_penalty
corresponds to increased emphasis on marginal balance. Additional details:

• Users may either specify their own distance matrix via the dist_matrix argument or ask
the function to create a robust Mahalanobis distance matrix internally on a set of covariates
specified by the dist_col argument; if neither argument is specified an error will result.
User-specified distance matrices should have row count equal to the number of treated units
and column count equal to the number of controls.

• If the caliper_option argument is specified, a propensity score caliper will be imposed, for-
bidding matches between units more than a fixed distance apart on the propensity score. The
caliper will be based either on a user-fit propensity score, identified in the input dataframe
by argument pscore_name, or by an internally-fit propensity score based on logistic regres-
sion against the variables named in propensity_col. If caliper_option is non-NULL and
neither of the other arguments is specified an error will result.

• tol controls the precision at which the objective functions is evaluated. When matching prob-
lems are especially large or complex it may be necessary to increase toleranceOption in order
to prevent integer overflows in the underlying network flow solver; generally this will be sug-
gested in appropariate warning messages.

dist_bal_match 15

• While by default tradeoffs are only assessed at penalty combinations provided by the user,
the user may ask for the algorithm to search over additional penalty values in order to identify
additional Pareto optimal solutions. rho_max_factor is a multiplier applied to initial penalties
to discover new solutions, and setting it larger leads to wider exploration; similarly, max_iter
controls how long the exploration routine runs, with larger values leading to more exploration.

Value

a named list whose elements are: * "rhoList": list of penalty combinations for each match * "match-
List": list of matches indexed by number

• "treatmentCol": character of treatment variable

• "covs": character vector of names of the variables used for calculating within-pair distance

• "exactCovs": character vector of names of variables that we want exact or close match on *
"idMapping": numeric vector of row indices for each observation in the sorted data frame for
internal use

• "stats": data frame of important statistics (total variation distance) for variable on which
marginal balance is measured

• "b.var": character, name of variable on which marginal balance is measured * "dataTable":
data frame sorted by treatment value

• "t": a treatment vector

• "df": the original dataframe input by the user

• "pair_cost1": list of pair-wise distance sum using the first distance measure

• "pair_cost2": list of pair-wise distance sum using the second distance measure (left NULL
since only one distance measure is used here).

• "version": (for internal use) the version of the matching function called; "Basic" indicates the
matching comes from dist_bal_match and "Advanced" from two_dist_match.

• "fPair": a vector of values for the first objective function; it corresponds to the pair-wise
distance sum according to the first distance measure.

• "fExclude": a vector of values for the second objective function; it corresponds to the number
of treated units being unmatched.

• "fMarginal": a vector of values for the third objective function; it corresponds to the marginal
balanced distance for the specified variable(s).

See Also

Other main matching function: two_dist_match()

Examples

data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")

16 dummy

r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)

dummy This is a modified version of the function "dummy" from the R package
dummies. Original code Copyright (c) 2011 Decision Patterns.

Description

Change is made to the "model.matrix" function so that the output could be used for the current
package.

Usage

dummy(
x,
data = NULL,
sep = "",
drop = TRUE,
fun = as.integer,
verbose = FALSE,
name = NULL

)

Arguments

x a data.frame, matrix or single variable or variable name

data (optional) if provided, x is the name of a column on the data

sep (optional) the separator used between variable name and the value

drop (optional) whether to drop unused levels

fun (optional) function to coerce the value in the final matrix; ’as,integer’ by default

verbose (optional) whether to print the number of variables; FALSE by default

name (optional) the column name to be selected for converting; NULL by default

edgelist2ISM 17

edgelist2ISM Change the edgelist to the infinity sparse matrix

Description

Change the edgelist to the infinity sparse matrix

Usage

edgelist2ISM(elist)

Arguments

elist the vector of the edges

Value

the infinity sparse matrix object

excludeCosts Create a skeleton representation of the exclusion edge costs

Description

Create a skeleton representation of the exclusion edge costs associated with pairings for a given
distance and network

Usage

excludeCosts(net, exclude.penalty = 1)

Arguments

net the network structure
exclude.penalty

(optional) numeric penalty for excluding a treated unit; 1 by default

Value

the skeleton with exclusion edge cost

18 extractSupply

extractEdges Extract edges from the network

Description

Extract edges from the network

Usage

extractEdges(net)

Arguments

net the network representation

Value

the list of edges

extractSupply Extract the supply nodes from the net

Description

Extract the supply nodes from the net

Usage

extractSupply(net)

Arguments

net the network representation

Value

the vector of the supply nodes

filter_match_result 19

filter_match_result Filter match result

Description

Filter match result

Usage

filter_match_result(matching_result, filter_expr)

Arguments

matching_result

the matching result object.

filter_expr character, the filtering condition based on the summary table returned by get_rho_obj.

Value

the filtered match result

flattenSkeleton Turns a skeleton representation of edge costs in a network

Description

Turns a skeleton representation of edge costs in a network back into the vector representation ex-
pected by the optimization routine. See comment on the costSkeleton function for more details.

Usage

flattenSkeleton(skeleton)

Arguments

skeleton the skeleton structure

Value

vector representation expected by the optimization routine.

20 generate_rhos

generateRhoObj Penalty and objective values summary

Description

Helper function to generate a dataframe with matching number, penalty (rho) values, and objective
function values.

Usage

generateRhoObj(matchingResult)

Arguments

matchingResult matchingResult object that contains information for all matches.

Value

a dataframe that contains objective function values and rho values corresponding coefficients before
each objective function.

See Also

Other numerical analysis helper functions: get_balance_table(), get_rho_obj(), get_unmatched()

generate_rhos Generate rho pairs

Description

An internal helper function that generates the set of rho value pairs used for matching. This function
is used when exploring the Pareto optimality of the solutions to the multi-objective optimization in
matching.

Usage

generate_rhos(rho1.list, rho2.list)

Arguments

rho1.list a vector of rho 1 values

rho2.list a vector of rho 2 values

Value

a vector of (rho1, rho2) pairs

getExactOn 21

getExactOn Generate a factor for exact matching.

Description

Generate a factor for exact matching.

Usage

getExactOn(dat, exactList)

Arguments

dat dataframe containing all the variables in exactList

exactList factor of names of the variables on which we want exact or close matching.

Value

factor on which to match exactly, with labels given by concatenating labels for input variables.

getPropensityScore Fit propensity scores using logistic regression.

Description

Fit propensity scores using logistic regression.

Usage

getPropensityScore(data, covs)

Arguments

data dataframe that contains a column named "treat", the treatment vector, and columns
of covariates specified.

covs factor of column names of covariates used for fitting a propensity score model.

Value

vector of estimated propensity scores (on the probability scale).

22 get_balance_table

get_balance_table Generate balance table

Description

The helper function can generate tabular analytics that quantify covariate imbalance after matching.
It only works for the ’Basic’ version of matching (produced by dist_bal_match).

Usage

get_balance_table(
matching_result,
cov_list = NULL,
display_all = TRUE,
stat_list = c("mean.diffs")

)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

cov_list (optional) a vector of names of covariates used for evaluating covariate imbal-
ance; NULL by default.

display_all (optional) a boolean value indicating whether or not to show the data for all
possible matches; TRUE by default

stat_list (optional) a vector of statistics that are calculated for evaluating the covariate
imbalance between treated and control group. The types that are supported can
be found here: bal.tab.

Details

The result can be either directly used by indexing into the list, or post-processing by the function
compare_tables that summarizes the covariate balance information in a tidier table. Users can
specify the arguments as follows: * cov_list: if it is set of NULL, all the covariates are included
for the covariate balance table; otherwise, only the specified covariates will be included in the tabu-
lar result. * display_all: by default, the summary statistics for each match are included when the
argument is set to TRUE. If the user only wants to see the summary statistics for matches with vary-
ing performance on three different objective values, the function would only display the matches
with number of treated units being excluded at different quantiles. User can switch to the brief
version by setting the parameter to FALSE. * stat_list is the list of statistics used for measuring
balance. The argument is the same as stats argument in bal.tab, which is the function that is used
for calculating the statistics. By default, only standardized difference in means is calculated.

Value

a named list object containing covariate balance table and statistics for numer of units being matched
for each match; the names are the character of index for each match in the matchResult.

get_five_index 23

See Also

Other numerical analysis helper functions: generateRhoObj(), get_rho_obj(), get_unmatched()

Examples

Generate matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)

Generate summary table for balance
balance_tables <- get_balance_table(match_result)
balance_tables_10 <- balance_tables$'10'

get_five_index An internal helper function that gives the index of matching with a
wide range of number of treated units left unmatched

Description

An internal helper function that gives the index of matching with a wide range of number of treated
units left unmatched

Usage

get_five_index(matching_result)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

Value

a vector of five matching indices with the number of treated units excluded at 0th, 25th, 50th, 75th
and 100th percentiles respectively.

24 get_pairdist_balance_graph

get_pairdist_balance_graph

Total variation imbalance vs. marginal imbalance

Description

Plotting function that generate sum of pairwise distance vs. total variation imbalance on speci-
fied balance variable. This function only works for ’Basic’ version of matching (conducted using
dist_bal_match).

Usage

get_pairdist_balance_graph(matching_result)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

Value

No return value, called for visualization of match result

See Also

Other Graphical helper functions for analysis: get_pairdist_graph(), get_tv_graph()

Examples

Generate matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)
Visualize the tradeoff between the pair-wise distance sum and
total variation distance
get_pairdist_balance_graph(match_result)

get_pairdist_graph 25

get_pairdist_graph Distance vs. exclusion

Description

Plotting function that generate sum of pair-wise distance vs. number of unmatched treated units

Usage

get_pairdist_graph(matching_result)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

Value

No return value, called for visualization of match result

See Also

Other Graphical helper functions for analysis: get_pairdist_balance_graph(), get_tv_graph()

Examples

Generate matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)
Generate visualization of tradeoff between pari-wise distance sum and
number of treated units left unmatched
get_pairdist_graph(match_result)

26 get_tv_graph

get_rho_obj Penalty and objective values summary

Description

Helper function to generate a dataframe with matching number, penalty (rho) values, and objective
function values.

Usage

get_rho_obj(matching_result)

Arguments

matching_result

matchingResult object that contains information for all matches.

Value

a dataframe that contains objective function values and rho values corresponding coefficients before
each objective function.

See Also

Other numerical analysis helper functions: generateRhoObj(), get_balance_table(), get_unmatched()

get_tv_graph Marginal imbalance vs. exclusion

Description

Plotting function that visualizes the tradeoff between the total variation imbalance on a specified
variable and the number of unmatched treated units. This function only works for the ’Basic’
version of matching (conducted using dist_bal_match).

Usage

get_tv_graph(matching_result)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

Value

No return value, called for visualization of match result

get_unmatched 27

See Also

Other Graphical helper functions for analysis: get_pairdist_balance_graph(), get_pairdist_graph()

Examples

Generate matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)
Generate visualization of tradeoff between total variation distance and
number of treated units left unmatched
get_tv_graph(match_result)

get_unmatched Get unmatched percentage

Description

A function that generate the percentage of unmatched units for each match.

Usage

get_unmatched(matching_result)

Arguments

matching_result

matchingResult object that contains information for all matches

Value

data frame with three columns, one containing the matching index, one containing the number of
matched units, and one conatining the percentage of matched units (out of original treated group
size).

See Also

Other numerical analysis helper functions: generateRhoObj(), get_balance_table(), get_rho_obj()

28 makeInfinitySparseMatrix

Examples

Not run:
get_unmatched(match_result)

End(Not run)

makeInfinitySparseMatrix

Internal helper to build infinity sparse matrix

Description

Formats the data and make a call to InfinitySparseMatrix-class

Usage

makeInfinitySparseMatrix(
data,
cols,
rows,
colnames = NULL,
rownames = NULL,
dimension = NULL,
call = NULL

)

Arguments

data the input numeric vector of cost

cols the input numeric vector corresponding to control units

rows the input numeric vector corresponding to treated units

colnames (optional) vector containing names for all control units

rownames (optional) vector containing names for all treated units

dimension (optional) vector of number of treated and control units

call (optional) funtion call used to create the InfinitySparseMatrix

Value

an InfinitySparseMatrix object

makeSparse 29

makeSparse Helper function to mask edges

Description

Remove some of the treatment-control edges from a network flow representation of a match (for-
bidding those pairings)

Usage

makeSparse(net, mask, replaceMask = TRUE)

Arguments

net the network object

mask a matrix indicating whether to exclude the corresponding edge

replaceMask (optional) whether to mask

Value

the masked network structure object

matched_data Get matched dataframe

Description

A function that returns the dataframe that contains only matched pairs from the original data frame
with specified match index

Usage

matched_data(matching_result, match_num)

Arguments

matching_result

an object returned by the main matching function dist_bal_match

match_num Integer index of match that the user want to extract paired observations from

Value

dataframe that contains only matched pair data

30 matrix2cost

Examples

Generate Matches
data("lalonde", package="cobalt")
ps_cols <- c("age", "educ", "married", "nodegree", "race")
treat_val <- "treat"
response_val <- "re78"
pair_dist_val <- c("age", "married", "educ", "nodegree", "race")
my_bal_val <- c("race")
r1s <- c(0.01,1,2,4,4.4,5.2,5.4,5.6,5.8,6)
r2s <- c(0.001)
match_result <- dist_bal_match(data=lalonde, treat_col= treat_val,
marg_bal_col = my_bal_val, exclusion_penalty=r1s, balance_penalty=r2s,
dist_col = pair_dist_val,
propensity_col = ps_cols, max_iter=0)
matched_data(match_result, 1)

matched_index An internal helper function that translate the matching index in the
sorted data frame to the original dataframe’s row index

Description

An internal helper function that translate the matching index in the sorted data frame to the original
dataframe’s row index

Usage

matched_index(matchingResult)

Arguments

matchingResult an object returned by the main matching function dist_bal_match

matrix2cost change the distance matrix to cost

Description

change the distance matrix to cost

Usage

matrix2cost(net, distance)

matrix2edgelist 31

Arguments

net the network structure
distance distance matrix

Value

the vector of cost

matrix2edgelist Helper function to convert matrix to list

Description

Convert between a matrix representation of distances between treated and control units and a list of
vectors (default format for build.dist.struct function in rcbalance package)

Usage

matrix2edgelist(mat)

Arguments

mat matrix representation of distances between treated and control units

Value

list of vector representation of distances

meldMask Helper function to combine two sparse distances

Description

Combine two sparse distances, allowing only pairings allowed by both

Usage

meldMask(mask1, mask2)

Arguments

mask1 matrix of the first mask
mask2 matrix of the second mask

Value

combined mask structure

32 obj.to.match

netFlowMatch Create network flow structure

Description

Create network flow structure

Usage

netFlowMatch(z, IDs = NULL)

Arguments

z a vector of treatment vectors

IDs (optional) the name of the units

Value

a networks structure

obj.to.match An internal helper function that transforms the output from the RELAX
algorithm to a data structure that is more interpretable for the output
of the main matching function

Description

An internal helper function that transforms the output from the RELAX algorithm to a data structure
that is more interpretable for the output of the main matching function

Usage

obj.to.match(out.elem, already.done = NULL, prev.obj = NULL)

Arguments

out.elem a named list whose elements are: (1) the net structure (2) the edge weights of
pair-wise distance (3) the edge weights of marginal balance (4) the list of rho
value pairs (5) the named list of solutions from the RELAX algorithm

already.done a factor indicating the index of matches already been transformed

prev.obj an object of previously transformed matches

Value

a named list with elements containing matching information useful for the main matching function

pairCosts 33

pairCosts Create a skeleton representation of the edge costs

Description

Create a skeleton representation of the edge costs

Usage

pairCosts(dist.struct, net)

Arguments

dist.struct the distance structure

net the net structure

Value

the skeleton representation of the given distance pairs and the net

rho_proposition Generate penalty coefficient pairs

Description

An internal helper function used for automatically generating the set of rho values used for grid
search in exploring the Pareto optimal set of solutions.

Usage

rho_proposition(
paircosts.list,
rho.max.factor = 10,
rho1old,
rho2old,
rho.min = 0.01

)

Arguments

paircosts.list a vector of pair-wise distance.

rho.max.factor a numeric value indicating the maximal rho values.

rho1old a vector of numeric values of rho1 used before.

rho2old a vector of numeric values of rho2 used before.

rho.min smallest rho value to consider.

34 solveP1

Value

a vector of pairs of rho values for future search.

solveP Solve the network flow problem - basic version

Description

Solve the network flow problem - basic version

Usage

solveP(net, f1.list, f2.list, rho, tol = 1e-05)

Arguments

net the network representation
f1.list the list of the first objective functions values for each node
f2.list the list of the second objective functions values for each node
rho the penalty coefficient
tol the tolerance value for precision

Value

the solution represented in a named list

solveP1 Solve the network flow problem - twoDistMatch

Description

Solve the network flow problem - twoDistMatch

Usage

solveP1(net, f1.list, f2.list, f3.list, rho1, rho2 = 0, tol = 1e-05)

Arguments

net the network representation
f1.list the list of the first objective functions values for each node
f2.list the list of the second objective functions values for each node
f3.list the list of the third objective functions values for each node
rho1 the penalty coefficient for the second objective
rho2 the penalty coefficient for the third objective
tol the tolerance value for precision

summary.multiObjMatch 35

Value

the solution represented in a named list

summary.multiObjMatch Generate numerical summary

Description

Main summary functions for providing tables of numerical information in matching penalties, ob-
jective function values, and balance.

Usage

S3 method for class 'multiObjMatch'
summary(
object,
type = "penalty",
cov_list = NULL,
display_all = TRUE,
stat = "mean.diff",
...

)

Arguments

object the matching result returned by either dist_bal_match or two_dist_match.
type (optional) the type of the summary result in c("penalty", "exclusion", "balance").

When "penalty" is passed in, the objective function values and the penalty values
are displayed for each match; when "exclusion" is passed in, the number of
units being matched is displayed for each match; when "balance" is passed in,
the covariate the covariate balance table from bal.tab function in cobalt function
is displayed and user can change covList to specify the variables to examine.
"penalty" by default.

cov_list (optional) factor of names of covariates that we want to evaluate covariate bal-
ance on if "balance" is passed in for type; default is NULL. When set to NULL,
the program will compare the covariates that have been used to construct a
propensity model.

display_all (optional) boolean value of whether to display all the matches if "balance" is
passed in for type; default is TRUE, where all matches are displayed.

stat (optional) character of the name of the statistic used for measuring covariate
balance if "balance" is passed in for type; default is "mean.diff". This argument
is the same as used in "cobalt" package, see: bal.tab

... ignored.

Value

a summary dataframe of the corresponding type.

36 two_dist_match

two_dist_match Optimal tradeoffs among two distances and exclusion

Description

Explores tradeoffs among three objective functions in multivariate matching: sums of two different
user-specified covariate distances within matched pairs, and the number of treated units included in
the match.

Usage

two_dist_match(
dist1_type = "user",
dist2_type = "user",
dist1_matrix = NULL,
data = NULL,
dist2_matrix = NULL,
treat_col = NULL,
dist1_col = NULL,
dist2_col = NULL,
exclusion_penalty = c(),
dist2_penalty = c(),
marg_bal_col = NULL,
exact_col = NULL,
propensity_col = NULL,
pscore_name = NULL,
ignore_col = NULL,
max_unmatched = 0.25,
caliper_option = NULL,
tol = 0.01,
max_iter = 1,
rho_max_factor = 10,
max_pareto_search_iter = 5

)

Arguments

dist1_type One of ("euclidean", "robust_mahalanobis", "user") indicating the type of dis-
tance that are used for the first distance objective functions. NULL by default.

dist2_type One of ("euclidean", "robust_mahalanobis", "user") charactor indicating the type
of distance that are used for the second distance objective functions. NULL by
default.

dist1_matrix (optional) matrix object that represents the distance matrix using the first dis-
tance measure; dist1_type must be passed in as "user" if dist1_matrix is non-
empty

two_dist_match 37

data (optional) data frame that contain columns indicating treatment, outcome and
covariates

dist2_matrix (optional) matrix object that represents the distance matrix using the second
distance measure; dist2_type must be passed in as "user" if dist2_matrix is
non-empty

treat_col (optional) character, name of the column indicating treatment assignment.

dist1_col (optional) character vector names of the variables used for calculating covariate
distance using first distance measure specified by dType

dist2_col (optional) character vector, names of the variables used for calculating covariate
distance using second distance measure specified by dType1

exclusion_penalty

(optional) numeric vector, penalty values associated with exclusion. Empty by
default, where auto grid search is triggered.

dist2_penalty (optional) numeric vector, penalty values associated with the distance specified
by dist2_matrix or dist2_type. Empty by default, where auto grid search is
tiggered.

marg_bal_col (optional) character, column name of the variable on which to evaluate balance.

exact_col (optional) character vector, names of the variables on which to match exactly;
NULL by default.

propensity_col character vector, names of columns on which to fit a propensity score model.

pscore_name (optional) character, name of the column containing fitted propensity scores;
default is NULL.

ignore_col (optional) character vector of variable names that should be ignored when con-
structing the internal matching. NULL by default.

max_unmatched (optional) numeric, maximum proportion of unmatched units that can be ac-
cepted; default is 0.25.

caliper_option (optional) numeric, the propensity score caliper value in standard deviations of
the estimated propensity scores; default is NULL, which is no caliper.

tol (optional) numeric, tolerance of close match distance; default is 1e-2.

max_iter (optional) integer, maximum number of iterations to use in searching for penalty
combintions that improve the matching; default is 1, where the algorithm searches
for one round.

rho_max_factor (optional) numeric, the scaling factor used in proposal for penalties; default is
10.

max_pareto_search_iter

(optional) numeric, the number of tries to search for the tol that yield pareto
optimal solutions; default is 5.

Details

Matched designs generated by this function are Pareto optimal for the three objective functions.
The degree of relative emphasis among the three objectives in any specific solution is controlled by
the penalties, denoted by Greek letter rho. Larger values for the penalties associated with the two
distances correspond to increased emphasis close matching on these distances, at the possible cost
of excluding more treated units. Additional details:

38 two_dist_match

• Users may either specify their own distance matrices (specifying the User option in dist1_type
and/or dist2_type and supplying arguments to dist1_matrix and/or dist2_matrix respec-
tively) or ask the function to create Mahalanobis or Euclidean distances on sets of covariates
specified by the dist1_col and dist2_col arguments. If dist1_type or dist2_type is not
specified, if one of these is set to user and the corresponding dist1_matrix argument is not
provided, or if one is NOT set to User and the corresponding dist1_col argument is not
provided, the code would error out.

• User-specified distance matrices passed to dist1_matrix or dist2_matrix should have row
count equal to the number of treated units and column count equal to the number of controls.

• If the caliper_option argument is specified, a propensity score caliper will be imposed, for-
bidding matches between units more than a fixed distance apart on the propensity score. The
caliper will be based either on a user-fit propensity score, identified in the input dataframe
by argument pscore_name, or by an internally-fit propensity score based on logistic regres-
sion against the variables named in propensity_col. If caliper_option is non-NULL and
neither of the other arguments is specified an error will result.

• tol controls the precision at which the objective functions is evaluated. When matching prob-
lems are especially large or complex it may be necessary to increase toleranceOption in order
to prevent integer overflows in the underlying network flow solver; generally this will be sug-
gested in appropariate warning messages.

• While by default tradeoffs are only assessed at penalty combinations provided by the user, the
user may ask for the algorithm to search over additional penalty values in order to identify
additional Pareto optimal solutions. rho_max_factor is a multiplier applied to initial penalty
values to discover new solutions, and setting it larger leads to wider exploration; similarly,
max_iter controls how long the exploration routine runs, with larger values leading to more
exploration.

Value

a named list whose elements are:

• "rhoList": list of penalty combinations for each match

• "matchList": list of matches indexed by number

• "treatmentCol": character of treatment variable

• "covs":character vector of names of the variables used for calculating within-pair distance

• "exactCovs": character vector of names of variables that we want exact or close match on

• "idMapping": numeric vector of row indices for each observation in the sorted data frame for
internal use

• "stats": data frame of important statistics (total variation distance) for variable on which
marginal balance is measured

• "b.var": character, name of variable on which marginal balance is measured (left NULL since
no balance constraint is imposed here).

• "dataTable": data frame sorted by treatment value

• "t": a treatment vector

• "df": the original dataframe input by the user

• "pair_cost1": list of pair-wise distance sum using the first distance measure

two_dist_match 39

• "pair_cost2": list of pair-wise distance sum using the second distance measure

• "version": (for internal use) the version of the matching function called; "Basic" indicates the
matching comes from dist_bal_match and "Advanced" from two_dist_match.

• "fDist1": a vector of values for the first objective function; it corresponds to the pair-wise
distance sum according to the first distance measure.

• "fExclude": a vector of values for the second objective function; it corresponds to the number
of treated units being unmatched.

• "fDist2": a vector of values for the third objective function; it corresponds to the pair-wise
distance sum corresponds to the

See Also

Other main matching function: dist_bal_match()

Examples

x1 = rnorm(100, 0, 0.5)
x2 = rnorm(100, 0, 0.1)
x3 = rnorm(100, 0, 1)
x4 = rnorm(100, x1, 0.1)
r1ss <- seq(0.1,50, 10)
r2ss <- seq(0.1,50, 10)
x = cbind(x1, x2, x3,x4)
z = sample(c(rep(1, 50), rep(0, 50)))
e1 = rnorm(100, 0, 1.5)
e0 = rnorm(100, 0, 1.5)
y1impute = x1^2 + 0.6*x2^2 + 1 + e1
y0impute = x1^2 + 0.6*x2^2 + e0
treat = (z==1)
y = ifelse(treat, y1impute, y0impute)
names(x) <- c("x1", "x2", "x3", "x4")
df <- data.frame(cbind(z, y, x))
df$x5 <- 1
names(x) <- c("x1", "x2", "x3", "x4")
df <- data.frame(cbind(z, y, x))
df$x5 <- 1
d1 <- as.matrix(dist(df["x1"]))
d2 <- as.matrix(dist(df["x2"]))
idx <- 1:length(z)
treated_units <- idx[z==1]
control_units <- idx[z==0]
d1 <- as.matrix(d1[treated_units, control_units])
d2 <- as.matrix(d2[treated_units, control_units])
match_result_1 <- two_dist_match(data=df, treat_col="z", dist1_matrix=d1,
dist1_type= "User", dist2_matrix=d2,
dist2_type="User", marg_bal_col=c("x5"), exclusion_penalty=r1ss,
dist2_penalty=r2ss,
propensity_col = c("x1"), max_iter = 0,
max_pareto_search_iter = 0)

40 visualize

visualize Visualize tradeoffs

Description

Main visualization functions for showing the tradeoffs between two of the three objective functions.
A 3-d plot can be visualized where the third dimension is represented by coloring of the dots.

Usage

visualize(
matching_result,
x_axis = "dist1",
y_axis = "dist2",
z_axis = NULL,
xlab = NULL,
ylab = NULL,
zlab = NULL,
main = NULL,
display_all = FALSE,
cond = NULL,
xlim = NULL,
ylim = NULL,
display_index = TRUE,
average_cost = FALSE

)

Arguments

matching_result

the matching result returned by either dist_bal_match or two_dist_match.

x_axis character, naming the objective function shown on x-axis; one of ("pair", "marginal",
"dist1", "dist2", "exclude", "distance_penalty", "balance_penalty", "dist1_penalty",
"dist2_penalty", "exclusion_penalty"), "dist1" by default.

y_axis character, naming the objective function shown on y-axis; one of ("pair", "marginal",
"dist1", "dist2", "exclude", "distance_penalty", "balance_penalty", "dist1_penalty",
"dist2_penalty", "exclusion_penalty"), "dist1" by default.

z_axis character, naming the objective function for coloring; one of ("pair", "marginal",
"dist1", "dist2", "exclude"), "exclude" by default.

xlab (optional) the axis label for x-axis; NULL by default.

ylab (optional) the axis label for y-axis; NULL by default.

zlab (optional) the axis label for z-axis; NULL by default.

main (optional) the title of the graph; NULL by default.

visualize 41

display_all (optional) whether to show all the labels for match index; FALSE by default,
which indicates the visualization function only labels matches at quantiles of
number of treated units being excluded.

cond (optional) NULL by default, which denotes all the matches are shown; other-
wise, takes a list of boolean values indicating whether to include each match

xlim (optional) NULL by default; function automatically takes the max of the first
objective function values being plotted on x-axis; if specified otherwise, pass in
the numeric vector c(lower_bound, upper_bound)

ylim (optional) NULL by default; function automatically takes the max of the first
objective function values being plotted on y-axis; if specified otherwise, pass in
the numeric vector c(lower_bound, upper_bound)

display_index (optional) TRUE by default; whether to display match index

average_cost (optional) FALSE by default; whether to show mean cost

Details

By default, the plotting function will show the tradeoff between the first distance objective func-
tion and the marginal balance (if dist_bal_match) is used; or simply the second distance objective
function, if two_dist_match is used.

Value

No return value, called for visualization of match result

Index

∗ Graphical helper functions for analysis
get_pairdist_balance_graph, 24
get_pairdist_graph, 25
get_tv_graph, 26

∗ main matching function
dist_bal_match, 13
two_dist_match, 36

∗ numerical analysis helper functions
generateRhoObj, 20
get_balance_table, 22
get_rho_obj, 26
get_unmatched, 27

addBalance, 3
addExclusion, 3

bal.tab, 8, 22, 35
balanceCosts, 4
build.dist.struct, 4
build.dist.struct_user, 5

callrelax, 6
check_representative, 6
combine_dist, 7
combine_match_result, 7
compare_matching, 8
compare_tables, 9
convert_index, 10
convert_names, 10
costSkeleton, 11

data_precheck, 11
descr.stats_general, 12
dist_bal_match, 13, 39
distanceFunctionHelper, 12
dummy, 16

edgelist2ISM, 17
excludeCosts, 17
extractEdges, 18
extractSupply, 18

filter_match_result, 19
flattenSkeleton, 19

generate_rhos, 20
generateRhoObj, 20, 23, 26, 27
get_balance_table, 20, 22, 26, 27
get_five_index, 23
get_pairdist_balance_graph, 24, 25, 27
get_pairdist_graph, 24, 25, 27
get_rho_obj, 20, 23, 26, 27
get_tv_graph, 24, 25, 26
get_unmatched, 20, 23, 26, 27
getExactOn, 21
getPropensityScore, 21

InfinitySparseMatrix-class, 28

makeInfinitySparseMatrix, 28
makeSparse, 29
matched_data, 29
matched_index, 30
matrix2cost, 30
matrix2edgelist, 31
meldMask, 31

netFlowMatch, 32

obj.to.match, 32

pairCosts, 33

rho_proposition, 33

solveP, 34
solveP1, 34
summary.multiObjMatch, 35

two_dist_match, 15, 36

visualize, 40

42

	addBalance
	addExclusion
	balanceCosts
	build.dist.struct
	build.dist.struct_user
	callrelax
	check_representative
	combine_dist
	combine_match_result
	compare_matching
	compare_tables
	convert_index
	convert_names
	costSkeleton
	data_precheck
	descr.stats_general
	distanceFunctionHelper
	dist_bal_match
	dummy
	edgelist2ISM
	excludeCosts
	extractEdges
	extractSupply
	filter_match_result
	flattenSkeleton
	generateRhoObj
	generate_rhos
	getExactOn
	getPropensityScore
	get_balance_table
	get_five_index
	get_pairdist_balance_graph
	get_pairdist_graph
	get_rho_obj
	get_tv_graph
	get_unmatched
	makeInfinitySparseMatrix
	makeSparse
	matched_data
	matched_index
	matrix2cost
	matrix2edgelist
	meldMask
	netFlowMatch
	obj.to.match
	pairCosts
	rho_proposition
	solveP
	solveP1
	summary.multiObjMatch
	two_dist_match
	visualize
	Index

